# PF08103B

# MOS FET Power Amplifier Module for E-GSM900 and DCS1800 Dual Band Handy Phone

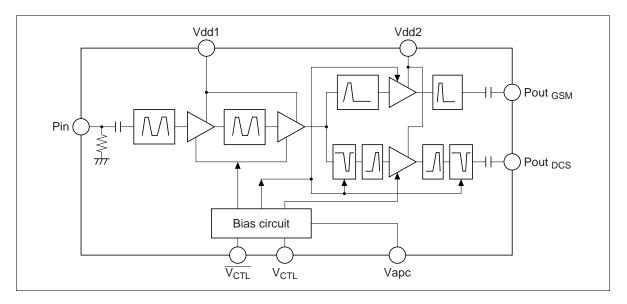
# **HITACHI**

ADE-208-785C (Z) 4th Edition May 1999

### **Application**

- Dual band amplifier for E-GSM900 (880 to 915 MHz) and DCS1800 (1710 to 1785 MHz).
- For 3.5 V nominal battery use

#### **Features**


- 1 in / 2 out dual band amplifier
- Simple external circuit including output matching circuit
- Simple band switching and power control
- High gain 3stage amplifier: +1 dBm input for GSM, +4.5 dBm input for DCS
- Lead less thin & Small package:  $11 \times 13.75 \times 1.8$  mm
- High efficiency: 45% Typ at 35.0 dBm for E-GSM

35% Typ at 32.5 dBm for DCS1800



### PF08103B

# **Internal Circuit Block Diagram**



#### **Band Select and Power Control**

| Operating Mode | $\mathbf{V}_{\mathtt{CTL}}$ | $\overline{oldsymbol{V}_{\mathtt{CTL}}}$ | Vapc    |  |
|----------------|-----------------------------|------------------------------------------|---------|--|
| GSM Tx ON      | Н                           | L                                        | Control |  |
| DCS Tx ON      | L                           | Н                                        | Control |  |
| Tx OFF         | L                           | L                                        | < 0.2 V |  |

#### **Current of Control Pin**

| Control Pin                 | <b>Equivalent Input Circuit</b> | Control Current   |
|-----------------------------|---------------------------------|-------------------|
| V <sub>CTL</sub>            |                                 | 2 μA Max          |
| $\overline{V_{\text{CTL}}}$ | O-W-H                           | 1 μA Max          |
| Vapc                        | <u></u>                         | 3 mA Max at 2.2 V |

Note: Control current is preliminary value.

#### HITACHI

# **Absolute Maximum Ratings** (Tc = 25°C)

| Item                                     | Symbol                        | Rating      | Unit |
|------------------------------------------|-------------------------------|-------------|------|
| Supply voltage                           | V <sub>DD</sub>               | 8.5         | V    |
| Supply current                           | I <sub>DD GSM</sub>           | 3.5         | А    |
|                                          | I <sub>DD DCS</sub>           | 2           | Α    |
| $V_{CTL}$ , $\overline{V_{CTL}}$ voltage | $V_{CTL}, \overline{V_{CTL}}$ | 4           | V    |
| Vapc voltage                             | Vapc                          | 4           | V    |
| Input power                              | Pin                           | 10          | dBm  |
| Operating case temperature               | Tc (op)                       | -30 to +100 | °C   |
| Storage temperature                      | Tstg                          | -30 to +100 | °C   |
| Output power                             | Pout <sub>GSM</sub>           | 5           | W    |
|                                          | Pout DCS                      | 3           | W    |

Note: The maximum ratings shall be valid over both the E-GSM-band (880-915 MHz), and the DCS-band (1710-1785 MHz).

### **Electrical Characteristics for DC** (Tc = 25°C)

| Item                                        | Symbol           | Min | Тур | Max | Unit | Test Condition                                                                                                                                        |
|---------------------------------------------|------------------|-----|-----|-----|------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Drain cutoff current                        | lds              | _   | _   | 20  | μΑ   | $V_{DD} = 4.7 \text{ V}, \text{ Vapc} = 0 \text{ V},$<br>$V_{CTL} = 0 \text{ V}, \overline{V_{CTL}} = 0 \text{ V}$                                    |
|                                             |                  | _   | _   | 300 | μА   | $V_{DD} = 4.7 \text{ V}, Vapc = 0 \text{ V}, \\ V_{CTL} = 0 \text{ V}, \overline{V_{CTL}} = 0 \text{ V}, \\ Tc = -20 \text{ to } +80^{\circ}\text{C}$ |
| Vapc control current                        | lapc             |     | _   | 3   | mA   | Vapc = 2.2 V                                                                                                                                          |
| V <sub>CTL</sub> control current            | I <sub>CTL</sub> |     | _   | 2   | μΑ   | $V_{CTL} = 3 V$                                                                                                                                       |
| $\overline{V_{\text{CTL}}}$ control current | T <sub>CTL</sub> | _   | _   | 1   | μΑ   | $\overline{V_{CTL}} = 3 \text{ V}$                                                                                                                    |

#### PF08103B

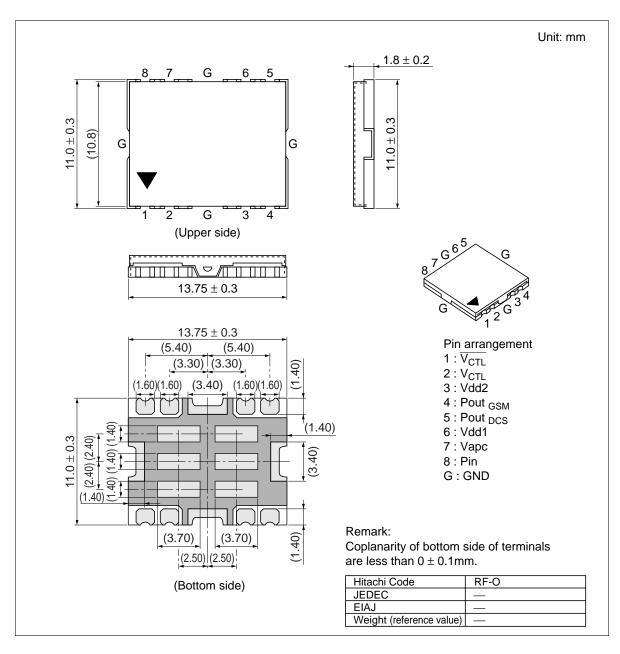
#### **Electrical Characteristics for GSM900 mode** (Tc = 25°C)

Test conditions unless otherwise noted:

f=880 to 915MHz,  $V_{DD1}=V_{DD2}=3.5V$ , Pin=+1dBm,  $V_{CTL}=2.0V$ ,  $\overline{V_{CTL}}=0.1V$ ,  $Rg=Rl=50\Omega$ ,  $Tc=25^{\circ}C$ , Pulse operation with pulse width 577  $\mu s$  and duty cycle 1:8 shall be used.

| Item                                          | Symbol        | Min                        | Тур            | Max        | Unit                                                                                              | Test Condition                                                                                                                                              |
|-----------------------------------------------|---------------|----------------------------|----------------|------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Frequency range                               | f             | 880                        |                | 915        | MHz                                                                                               |                                                                                                                                                             |
| Control voltage range                         | Vapc          | 0.2                        | _              | 2.2        | V                                                                                                 |                                                                                                                                                             |
| Total efficiency                              | $\eta_{T}$    | 40                         | 45             | _          | %                                                                                                 | Pout <sub>GSM</sub> = 35dBm,                                                                                                                                |
| 2nd harmonic distortion                       | 2nd H.D.      | _                          | -45            | -35        | dBc                                                                                               | Vapc = controlled                                                                                                                                           |
| 3rd harmonic distortion                       | 3rd H.D.      | _                          | -45            | -35        | dBc                                                                                               | •                                                                                                                                                           |
| 4th~8th harmonic distortion                   | 4th~8th H.D.  | _                          | _              | -35        | dBc                                                                                               | •                                                                                                                                                           |
| Input VSWR                                    | VSWR (in)     | _                          | 1.5            | 3.5        | _                                                                                                 | •                                                                                                                                                           |
| Output power (1)                              | Pout (1)      | 35.0                       | 36.0           | _          | dBm                                                                                               | Vapc = 2.2V                                                                                                                                                 |
| Output power (2)                              | Pout (2)      | 33.5                       | 34.2           | _          | dBm                                                                                               | $V_{DD} = 3.0V$ , $Vapc = 2.2V$ , $Tc = +85^{\circ}C$                                                                                                       |
| Isolation                                     | _             | _                          | -45            | -37        | dBm                                                                                               | Vapc = 0.2 V                                                                                                                                                |
| Isolation at DCS RF-output when GSM is active | _             | _                          | -30            | -20        | dBm                                                                                               | Pout <sub>GSM</sub> = 35dBm (GSM mode)<br>Measured at f = 1760 to 1830MHz,<br>Pin(GSM) = +1dBm                                                              |
| Switching time                                | $t_r$ , $t_f$ | _                          | 1              | 2          | μs                                                                                                | Pout $_{GSM} = 0$ to $35.0$ dBm                                                                                                                             |
| Stability                                     | _             | No parasitic oscillation - |                |            | _                                                                                                 | $V_{DD}=3$ to 5.1V, Pout $\leq$ 35.0dBm, Vapc $_{GSM}\leq$ 2.2V GSM pulse. Rg = $50\Omega$ , Tc = $25^{\circ}$ C, Output VSWR = $6:1$ All phases            |
| Load VSWR tolerance                           | _             | No deg                     | No degradation |            | _                                                                                                 | $V_{DD}=3$ to 5.1V, Pout $_{GSM}\leq 35.0$ dBm, Vapc $_{GSM}\leq 2.2$ V GSM pulse. Rg = $50\Omega$ , t = 20sec., Tc = 25°C, Output VSWR = 10 : 1 All phases |
| Noise power                                   | Pnoise1       | _                          | _              | -80        | dBm                                                                                               | $f_0 = 915MHz$ , $f_{rx} = f_0 + 10MHz$<br>Pout <sub>GSM</sub> = 35dBm, RES BW = 100kHz                                                                     |
|                                               | Pnoise2       | _                          | _              | -84        | dBm                                                                                               | $f_0 = 915 MHz$ , $f_{rx} = f_0 + 20 MHz$<br>Pout <sub>GSM</sub> = 35dBm, RES BW = 100kHz                                                                   |
| Slope Pout/Vapc                               | _             | _                          | _              | 200        | dB/V                                                                                              | Pout <sub>GSM</sub> = 0 to 35dBm                                                                                                                            |
| Phase shift                                   | _             | _                          | _              | 20         | deg/<br>dB                                                                                        | Pout <sub>GSM</sub> = 34 to 35dBm                                                                                                                           |
| Total conversion gain1                        | _             | — — -5                     |                | dB         | $f_0 = 915 MHz$ , (Pin = +1dBm)<br>Other sig. = 895MHz (Pin = -40dBc)<br>Pout $_{GSM} = 33.5 dBm$ |                                                                                                                                                             |
| Total conversion gain2                        | _             | _                          | _              | <b>-</b> 5 | dB                                                                                                | $f_0$ = 915MHz, (Pin = +1dBm)<br>Other sig. = 905MHz (Pin = -40dBc)<br>Pout $_{GSM}$ = 33.5dBm                                                              |
| AM output                                     | _             | _                          | _              | 20         | %                                                                                                 | Pout <sub>GSM</sub> = +5dBm,<br>4%AM modulation at input<br>50kHz modulation frequency                                                                      |

### **Electrical Characteristics for DCS1800 mode** (Tc = 25°C)


Test conditions unless otherwise noted:

f=1710 to 1785MHz,  $V_{DD1}=V_{DD2}=3.5V$ , Pin=+4.5dBm,  $V_{CTL}=0.1V$ ,  $\overline{V_{CTL}}=2.0V$ ,  $Rg=Rl=50\Omega$ ,  $Tc=25^{\circ}C$ , Pulse operation with pulse width 577  $\mu s$  and duty cycle 1:8 shall be used.

| Item                        | Symbol                          | Min                      | Тур  | Max        | Unit                                                                                                                                                        | Test Condition                                                                                    |
|-----------------------------|---------------------------------|--------------------------|------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Frequency range             | f                               | 1710                     | _    | 1785       | MHz                                                                                                                                                         |                                                                                                   |
| Control voltage range       | Vapc                            | 0.2                      | _    | 2.2        | V                                                                                                                                                           |                                                                                                   |
| Total efficiency            | $\eta_{T}$                      | 30                       | 35   | _          | %                                                                                                                                                           | Pout <sub>DCS</sub> = 32.5dBm,                                                                    |
| 2nd harmonic distortion     | 2nd H.D.                        | _                        | -45  | -35        | dBc                                                                                                                                                         | Vapc = controlled                                                                                 |
| 3rd harmonic distortion     | 3rd H.D.                        | _                        | -45  | -35        | dBc                                                                                                                                                         | <del>.</del>                                                                                      |
| 4th~8th harmonic distortion | 4th~8th H.D.                    | _                        | _    | -35        | dBc                                                                                                                                                         | <u>.</u>                                                                                          |
| Input VSWR                  | VSWR (in)                       | _                        | 3    | 4          | _                                                                                                                                                           | -                                                                                                 |
| Output power (1)            | Pout (1)                        | 32.5                     | 33   | _          | dBm                                                                                                                                                         | Vapc = 2.2V                                                                                       |
| Output power (2)            | Pout (2)                        | 30.8                     | 31.3 | _          | dBm                                                                                                                                                         | $V_{DD} = 3.1V$ , $Vapc = 2.2V$ , $Tc = +85$ °C                                                   |
| Isolation                   | _                               | _                        | -42  | -37        | dBm                                                                                                                                                         | Vapc = 0.2V                                                                                       |
| Switching time              | t <sub>r</sub> , t <sub>f</sub> | _                        | 1    | 2          | μs                                                                                                                                                          | Pout <sub>DCS</sub> = 0 to 32.5dBm                                                                |
| Stability                   | _                               | No parasitic oscillation |      | _          | $V_{DD}=3.1$ to 5.1V, Pout $_{DCS}\leq 32.5$ dBm, $Vapc\leq 2.2V$ DCS pulse. $Rg=50\Omega,Tc=25^{\circ}C,$ Output VSWR = 6 : 1 All phases                   |                                                                                                   |
| Load VSWR tolerance         | _                               | No degradation           |      | _          | $V_{DD}=3.1$ to 5.1V, Pout $_{DCS}\leq 32.5$ dBm, $Vapc\leq 2.2V$ DCS pulse. Rg = $50\Omega$ , t = $20$ sec., Tc = $25$ °C, Output VSWR = 10 : 1 All phases |                                                                                                   |
| Noise power                 | Pnoise                          | _                        | _    | -77        | dBm                                                                                                                                                         | $f_0 = 1785MHz, f_{rx} = f_0 + 20MHz,$<br>Pout <sub>DCS</sub> = 32.5dBm, RES BW = 100kHz          |
| Slope Pout/Vapc             | _                               | _                        | _    | 200        | dB/V                                                                                                                                                        | Pout <sub>DCS</sub> = 0 to 32dBm                                                                  |
| Phase shift                 | _                               | _                        | _    | 20         | deg/<br>dB                                                                                                                                                  | Pout <sub>DCS</sub> = 31 to 32dBm                                                                 |
| Total conversion gain       | _                               |                          | _    | <b>-</b> 5 | dB                                                                                                                                                          | $f_0$ = 1785MHz, (Pin = +4.5dBm)<br>Other sig. = 1765 MHz (-40dBc)<br>Pout <sub>DCS</sub> = 31dBm |
| AM output                   | _                               | _                        | _    | 20         | %                                                                                                                                                           | Pout <sub>DCS</sub> = 0dBm,<br>4%AM modulation at input<br>50kHz modulation frequency             |

#### HITACHI

#### **Package Dimensions**



#### **Cautions**

- 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document.
- 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use.
- 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.
- 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.
- 5. This product is not designed to be radiation resistant.
- 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.
- 7. Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor products.

# HTACHI

#### Hitachi, Ltd.

Semiconductor & Integrated Circuits.

Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109

http:semiconductor.hitachi.com/

NorthAmerica URL Europe

http://www.hitachi-eu.com/hel/ecg Asia (Singapore) Asia (Taiwan) Asia (HongKong) http://www.has.hitachi.com.sg/grp3/sicd/index.htm http://www.hitachi.com.tw/E/Product/SICD\_Frame.htm http://www.hitachi.com.hk/eng/bo/grp3/index.htm Japan

http://www.hitachi.co.jp/Sicd/indx.htm

#### For further information write to:

Hitachi Semiconductor (America) Inc. 179 East Tasman Drive, San Jose,CA 95134 Tel: <1> (408) 433-1990 Fax: <1>(408) 433-0223 Hitachi Europe GmbH Electronic components Group Dornacher Straße 3 D-85622 Feldkirchen, Munich Germany Tel: <49> (89) 9 9180-0

Fax: <49> (89) 9 29 30 00 Hitachi Europe Ltd. Electronic Components Group. Whitebrook Park Lower Cookham Road Maidenhead

Berkshire SL6 8YA, United Kingdom Tel: <44> (1628) 585000 Fax: <44> (1628) 778322

Hitachi Asia Pte. Ltd. 16 Collyer Quay #20-00 Hitachi Tower Singapore 049318 Tel: 535-2100 Fax: 535-1533

Hitachi Asia Ltd. Taipei Branch Office 3F, Hung Kuo Building. No.167, Tun-Hwa North Road, Taipei (105) Tel: <886> (2) 2718-3666 Fax: <886> (2) 2718-8180

Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Tsim Sha Tsui, Kowloon, Hong Kong Tel: <852> (2) 735 9218

Fax: <852> (2) 730 0281 Telex: 40815 HITEC HX

Copyright ' Hitachi, Ltd., 1999. All rights reserved. Printed in Japan.

#### HITACHI

# This datasheet has been downloaded from:

www. Data sheet Catalog.com

Datasheets for electronic components.